Probing the sites of interactions of rotaviral proteins involved in replication.

نویسندگان

  • Maria Viskovska
  • Ramakrishnan Anish
  • Liya Hu
  • Dar-Chone Chow
  • Amy M Hurwitz
  • Nicholas G Brown
  • Timothy Palzkill
  • Mary K Estes
  • B V Venkataram Prasad
چکیده

UNLABELLED Replication and packaging of the rotavirus genome occur in cytoplasmic compartments called viroplasms, which form during virus infection. These processes are orchestrated by yet-to-be-understood complex networks of interactions involving nonstructural proteins (NSPs) 2, 5, and 6 and structural proteins (VPs) 1, 2, 3, and 6. The multifunctional enzyme NSP2, an octamer with RNA binding activity, is critical for viroplasm formation with its binding partner, NSP5, and for genome replication/packaging through its interactions with replicating RNA, the viral polymerase VP1, and the inner core protein VP2. Using isothermal calorimetry, biolayer interferometry, and peptide array screening, we examined the interactions between NSP2, VP1, VP2, NSP5, and NSP6. These studies provide the first evidence that NSP2 can directly bind to VP1, VP2, and NSP6, in addition to the previously known binding to NSP5. The interacting sites identified from reciprocal peptide arrays were found to be in close proximity to the RNA template entry and double-stranded RNA (dsRNA) exit tunnels of VP1 and near the catalytic cleft and RNA-binding grooves of NSP2; these sites are consistent with the proposed role of NSP2 in facilitating dsRNA synthesis by VP1. Peptide screening of VP2 identified NSP2-binding sites in the regions close to the intersubunit junctions, suggesting that NSP2 binding could be a regulatory mechanism for preventing the premature self-assembly of VP2. The binding sites on NSP2 for NSP6 were found to overlap that of VP1, and the NSP5-binding sites overlap those of VP2 and VP1, suggesting that interaction of these proteins with NSP2 is likely spatially and/or temporally regulated. IMPORTANCE Replication and packaging of the rotavirus genome occur in cytoplasmic compartments called viroplasms that form during virus infection and are orchestrated by complex networks of interactions involving nonstructural proteins (NSPs) and structural proteins (VPs). A multifunctional RNA-binding NSP2 octamer with nucleotidyl phosphatase activity is central to viroplasm formation and RNA replication. Here we provide the first evidence that NSP2 can directly bind to VP1, VP2, and NSP6, in addition to the previously known binding to NSP5. The interacting sites identified from peptide arrays are consistent with the proposed role of NSP2 in facilitating dsRNA synthesis by VP1 and also point to NSP2's possible role in preventing the premature self-assembly of VP2 cores. Our findings lead us to propose that the NSP2 octamer with multiple enzymatic activities is a principal regulator of viroplasm formation, recruitment of viral proteins into the viroplasms, and possibly genome replication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular docking study of anti-viral FDA-approved drugs as novel entry and replication Ebola viral inhibitors

Background & Objective: Because of the reported high ability of virulence and the lack of appropriate drug of Ebola virus during the last decades, many investigations have been accomplished regarding discovery and the introduction of anti-Ebola drugs. The aim of this research was the bioinformatical study of entry and replication of Ebola viral inhibition by drug repurposing. Materials & Method...

متن کامل

بررسی مقایسه‌ای اثرEnamel Matrix Protein به تنهایی و همراه با پیوند استخوانی اتوژن در درمان ضایعات پریودنتال انسانی داخل استخوانی دو دیواره

Statement of Problem: Regenerative periodontal procedures are one mode of therapy that attempts to restore the lost supporting structures of the dentition around a previously diseased root surface.Purpose: The purpose of this study was comparison between Enamel matrix proteins (EMP) used alone or in combination with autogenous bone graft (ABG) in the treatment of human intrabony periodontal def...

متن کامل

DNA REPLICATION AND SYNTHESIS OF DNABINDING PROTEINS IN THE CHLOROPLASTS OF A CALLUS CULTURE

Continuous labelling of callus with H-thymidine results in intermittent peaks of H-DNA per chloroplast, showing synchrony of division. The increase in H-DNA could be due to several replication rounds, and the drop to successive plastid divisions without intervening DNA synthesis. The level of DNA-binding proteins in the chloroplast parallels the peaks of plastidal DNA synthesis; such pro...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Computational identification of post­translational modification sites and functional families reveal possible moonlighting role of rotaviral proteins

Rotavirus (RV) diarrhoea causes huge number deaths in children less than 5 years of age. In spite of available vaccines, it has been difficult to combat RV due to large number of antigenically distinct genotypes, high mutation rates, generation of reassortant viruses due to segmented genome. RV is an eukaryotic virus which utilizes host cell machinery for its propagation. Since RV only encodes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 88 21  شماره 

صفحات  -

تاریخ انتشار 2014